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Abstract 

This paper presents the first efficient method to solve an earliness-tardi- 

ness single machine n job scheduling model with idle times permitted. In this 

model the earliness and tardiness penalties are proportional to the processing 

times of the jobs. A two stage decomposition process builds the optimal job 

arrangement as a sequence of single and multijob blocks. The arrangement of the 

jobs within each multijob block is unspecified since it depends on the start time 

of this block. This process is followed by a procedure that drastically reduces 

the number of candidate optimal n job sequences. Finally an available optimal 

timing algorithm is recommended and implemented to select the best schedule among 

those sequences. The solution procedure tested on a PC on 400 examples for n=40 

and 50 proves to be very fast. 

1. Introduction 

Just-in-time production environment is being increasingly popular in manu- 

facturing. The associated advantages like reduction in inventory are the prime 

motivation for implementing such systems. In this environment, jobs should be 

completed as close to the due date as possible. Penalties are associated with 

both tardiness and earliness of the jobs. A very relevant objective in this type 

of situation is to minimize the sum of the earliness and tardiness penalties of 

all jobs. Conceptually, the inclusion of earliness in the objective means that 

there could be inserted idle time in the schedule so that jobs are scheduled to 

finish close to their due dates. This non-regular measure of performance makes 

the problem very hard to solve. 

This paper deals with a single machine n job earliness tardiness model 

(later called ET model). Garey et al. [z] consider a case with equal penalties 
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for earliness and tardiness. They prove the NP-completeness of the ET model and 

also present an O(n log n) algorithm to find the best schedule for a given se- 

quence . Yano and Kim [7] and Davis and Kanet /3] developed O(nz] optimal timing 

algorithms for arbitrary earliness and tardiness penalties. 

This paper presents the first efficient method to solve an ET model with 

idle times permitted. This model assumes that the earliness and tardiness penal- 

ties of the jobs are proportional to their processing times. Yano and Kim [7] 

outlined a branch and bound method and used it to evaluate four heuristic pro- 

cedures tested on 100 problems of the size 540. 

The tardiness version of this model has been earlier explored by Arkin and 

Roundy [l] and Szwarc and Liu [5]. 

The solution procedure of the ET model rests on the following basic find- 

ings . 

1. The ET model is decomposable into blocks as in the tardiness version. What 

is remarkable is that the arrangement of those blocks does not chanqe when 

their start times are shifted. What does change is the arrangement of 

jobs within each block. 

2. The precedence relations on which the decomposability is based remain valid 

even when idle times are permitted. 

Based on these findings, we determine an initial list of potentially opti- 

mal sequences. Taking advantage of certain precedence relations, we develop a 

procedure that drastically reduces the initial list to a manageable number of 

sequences. Finally we apply a recently developed optimal timing algorithm of [a] 

to every potential candidate in the reduced list in order to select the optimal 

schedule of our ET model. (The optimal timing algorithm of [3] can also be 

applied.] Our solution procedure tested on 400 problems on a PC proves to be 

quite efficient. 

2. The Precedence Matrix and Problem DecomDosition (Staqe I] 

Throughout the paper, we use the following notations: 

1=(1,2 ,-.., n) - the set of n jobs, 

Pk - processing time of job k, kt1, 

d, - the due date of job k, 

C, - completion time of job k, 



T* - max(o, c,-d,) - the tardiness of job k, 
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E, - max(0, 4-C,) - the earliness of job k, 

epr - earliness penalty for job k, ~0, 

Ppr - tardiness penalty for job k, fl>O. 

For convenience, we arrange the jobs such that 

PI 2~2 2 . . . SP,, and icj if p, = p, and d,sd,. 

The problem can be formally stated as: find a schedule S that minimizes 

f(S) = z Cap,& + Pp,T,). (1) 
k=l 

Consider two schedules S, = aija and S, = ujilr where i,jcI, t = Z pr and 0 and 
kco 

r are two disjoint subsequences of the remaining n-2 jobs. Then 

A,,(t)=f(S,)-f(S,) is the cost of interchanging adjacent jobs i and j if their 

processing starts at t. Assume that there is no idle time between jobs i and j 

in S, and S,. Then A,,(t) can be presented in the following compact form: 

*j Aij (t) = ppj [t+Pj-djl - ~: [t+Pi-dil + I 1 I 1 *i + pp, [t+pi+pj-dil - I 1 1. 
(2) 

once we use the symbol rxl ~~1 [zl to denote the following function: 

[I [ 
-xz if zc0 

; rz1 = 
yz if 220 

This cost A,,(t) does not depend on how the jobs are arranged in (r and T but 

depends on start time t of the pair. Let us define a value tij such that 

t '3 = di - pi - p, + di-dj pl-pj Pj* Pl*Pj. (3) 

Let Ai; be a special case of Aij(t) where ~0. The following result ties our 

model to the tardiness model of 151 (the proof is given in the Appendix). 

1: Lemma Ai, = y A,;(t). 

Reference [51 establishes the followingpropertythat specifies the optimal 

arrangement of adjacent jobs i and j, icj, where there is no idle time between 

those jobs. 

Prooerty 1: (a) If dX-d, + 0 then i-j (i precedes j), Vt. 

(b) If did, + pi-p, then j-i, Vt. 
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(cl If 0 < di-$ < pi-p, then j-i for tct,, and i-j for tst,,. 

where t,, is defined by (3). 

If pI=p, and di=d, then i-j, Vt because case a is checked prior to case b. The 

orderings for cases (a) and (b) are unconditional and will be called slobal 

orderinss. The ordering of case (c) is conditional since it depends on t. This 

ordering changes direction for t=tij. 

By Lemma 1, sgn (A,,(t)) = sgn (Ax\(t)), Vt. Then Property 1 is valid for 

our model, if there is no idle time between jobs i and j. 

Yano and Kim (71 also established ordering conditions (a) and (b) of Prop- 

erty 1. The scope of their conditions is limited to local pairs of adjacent 

jobs. 

Next we show that Property 1 remains in force in our ET model by proving 

the following basic result. 

Property 2: Property 1 is valid when idle times are permitted. 

Proof: Let us first utilize two simple observations from [61 regarding m ET 

model. 

(I) Consider a schedule where there is idle time between adjacent jobs r and 

s. If r is the earlier job and d,>d,, then one can find a better schedule 

without idle time between r and s by starting r later or (and) starting s 

earlier (by considering cases C,sd, and C,>d, where C, is the completion 

time of job s in the schedule). 

(II) If there is idle time in an optimal schedule between adjacent jobs r and 

s where r is the earlier job, then d,-d,>p,. 

To prove the theorem, consider an optimal schedule S.where there is idle 

time between jobs i and j, icj. Examine all three cases of Property 1. 

Case (a) : d, s d,: According to the optimality of S and observation I, j cannot 

precede i in S. Hence i must precede j. 

Case (b): di-d: TC D.-D,: Then d, > 4. Again the optimality of S and observation 

I imply that j precedes i. 

Case Cc) : 0 < d&-d, c D.-oj: Due to d, > d,, the assumptions about S and obser- 

vation I, job j precedes i. In view of observation II, condition d,-d,>p, 

reads as d,-d, > pi, which is inconsistent with Case (c). Hence this case 

is ruled out. QED. 
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Since Property 1 of [Sl is valid for our model we take advantage of some 

findings of 151 derived from Property 1 in order to decompose our problem. First 

define an upper triangular precedence matrix T for all 1 B i < j s n by placing 

the symbols in cell Ci,j) : "-II for case (a) of Property 1, "+" for case (b), and 

"ti," for case (c). 

For illustration consider the following: 

Examole 1 

p1,...,p20=: 96, 93, 93, 89, 73, 70, 53, 44, 42, 35. 34, 32, 27, 27. 17, 14, 
11. 10, 4, 3. 

d I,..., d,,=: 411, 392, 463, 480, 246, 364. 493, 116, 93, 255, 605, 261. 134, 
471, 209, 395, 340, 523, 343, 518. 

The precedence matrix T is given in Figure 1. 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 
.._--__-_---______-_--.--------------------------.----- 

123456 
_____________---.--_----- 

96) ++ -- -- ++ ++ 
,*gj -- -- ++ ++ 

282) -- t+ +t 
371) ++ ++ 

444) .- 
514) -- 

- -  ++ ++ ++ - -  ++ l + - -  ++ 304 313 -- 314 -- 
- -  t+ ++ l * - -  ++ ++ - -  ++ - -  295 - -  297 - -  
- -  ++ ++ ++ - -  ++ ++ - -  tt 368 tt -- tt __ 
__ +t tt +t -- t+ t+ 368 tt +t tt - - +t __ 
__ l + t+ _. - -  _-  +t _- 167 -- ._ ._ 
- -  l * l t +t - -  tt t+ - -  tt -. 287 .- 29; :: 

5b7) c+ ++ +t -- +t t+ 436 +t tt t+ -- tt ._ 
61,) t+ __ __ _- _. __ __ -- .- __ __ __ 

653) __ _- __ ._ __ ._ _- -_ __ __ __ 
688) -- -- t+ -- tt *- -- .- -_ -_ 

722) tt tt tt t+ tt t+ t+ t+ +t 
754) tt -- ++ -- -- -- ._ __ 

781) _- -- -- -. ._ __ __ 
808) +t tt tt -- tt -- 

825) .- -- -_ ._ __ 
839) tt -- tt -- 

850) __ __ __ 
860) ++ 512 

'864) -- 
867) 

Figure 1: Precedence Matrix of Example 1 

The numbers in cells (j,j), j=l,...,20, indicate According to [Sl, the 
k=l 

jobs can be divided into mutually exclusive blocks by defining a set D of cells 

(i,j) of T marked by "t,,". Divide this set into mutually exclusive subsets 

~,,n,,... by using the following rule: once Ci,j) 1s assqned to 4, then (i,u) 

and (u,j) also belong to 52,. Next define a set of jobs B,, called a multijob 

block, as 

B, = ((i)u(j) [ (i,j)ED,}. 

Those,blocks are shown to be mutually exclusive. 

B=(k) is a sinule job block if all entries of T are "+" or 'I-" in row and 

column k. 
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In our example, R,=((l,lS), (1,17), (1,19), (2,171, (2,19), (3,16), (6,171, 

(6,19)}, n,={ (4,14),(7,14) ), R,=((5,1S)}, D,=(lB,20). Hence the list of the 

multijob and single job blocks is B,=(1,2,3,6,16,17,19), B,=(4,7,14), B,=(5,15), 

B,=(18,20), B,=(8), B,=(9), B,=(lO), B,=(U), B,=(12), B,,=(13). 

To arrange the blocks we utilize the following powerful property of [51: 

If m job of block B, globally precedes m job of block B, then eves job of 

B, globally precedes m job of B,. 

According to [Sl, the optimal arrangement of blocks is found by sequencing 

the first jobs of each block in a nondecreasing order of their due dates (if ties 

occur, place the job with a smaller d,-p, first). The optimal block sequence of 

Example 1 is 

9,8,13,(5,15),10,12,(1,2,3,6,16,17,19),(4,7,14),(18,20),11, 

where the arrangement of the jobs within each multijob block is unspecified. 

However, the arrangement of blocks remains unchansed since it does not deoend on 

their start or comoletion times. Let t, be the sum of the processing times of 

all jobs preceding block B. Then t, is the earliest start time of block B. The 

precedence submatrices T , T , T , and T 
B, % B, B, 

are given in Figure 2. 

B, 
1 2 3 6 16 17 19 

__^_--_----_-------------------- 

270) 
++ -- ++ 304 313 314 

-- ++ -- 295 297 
+f 368 f+ ++ 

-- 287 291 
cc ++ 

-- 

B3 

1 
2 
3 
6 

16 
17 
19 

B, 
4 7 14 I 5 15 18 20 

_----------- e----e- 
651) I 113) I 

-------- 
820) 

-- 368 { 4 167 1 5 512 
436 1 7 I 15 

114 

I 
I 
I 18 
120 

Figure 2: Submatrices of Pour Blocks of Example 1 
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The earliest start times are listed in the left upper corner of the sub- 

matrices. In the next section we complete the decomposition process and generate 

candidate sequences. 

3. Block Partition (Staqe II) and Candidate Seauences 

Now that we have found the optimal block arrangement we know the earliest 

start time t. for each block B. If tij+t,, then job i unconditionally precedes 

j in block B since their start time tat,. This unconditional ordering is called 

m since it is valid within a particular block. If tij+t., then t,,st and each 

(Iti," entry is updated to a n-1' to indicate that i-j unconditionally. we call 

it 11-11 updating. According to Figure 2, entries (4,14) and (7.14) of B, and 

(18,20) of B, are marked by "-". 

A 'I+" updating (to indicate that j-+i unconditionally in B) would also be 

possible if the latest completion time of block B were m at the end of Stage 

I. This is the case for the tardiness version where processing starts at zero 

and goes on uninterrupted. Hence the start and completion times of each block 

are fixed for this case. 

Consider a 11-11 updated submatrix T, of block B. This block can be further 

decomposed by applying the following rule. 

1: Rule If all entries of T, are I'+" in column k and "-'I in row k, then k is 

the first job of B. 

(the "+" entries symbolize global orderings while the 11-V symbolize global or 

local orderings). 

If all "t 'I " entries of T, are converted into u'-" then, according to [Sl, 

block B can be comuletelv decomposed by repetitive application of Rule 1. In our 

example, Rule 1 splits blocks B, and B, into sequences 4,7,14 and 18,20 respect- 

ively. As a result, the second stage decomposition produces sequence 

9,8,13,~5,15~,10,12,~1,2,3,6,16,17,19),4,7,l4,l8,2O,ll 

where the arrangement of jobs of B, and B, is still unspecified. 

We will show that the list of candidate sequences can be drastically re- 

duced even further for m-job blocks B, mz3, once some entries are "+" or u-n in 

their respective submatrices. Based on Property 1 and Rule 1 we offer a proced- 

ure that considerably reduces the number of candidate sequences. 
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1. 

(a) 

(b) 

2. 
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For each job r(B make a list of all possible immediate successors seB 

where, according to T,, r precedes s unconditionally or conditionally. 

Formally s is a successor of r if 

For s<r, the entry of (s,r) is "+*' or 'It,,". 

For s>r. the entry of (r,s) is n-n or "t,,". 

Generate all possible m job sequences of B, called B-sequences, using a 

branching procedure. Consider node sr (initially a=@ and r is each of the 

m jobs of B) where Q is a sequence of jobs of B preceding r. 

Before branching gr perform the following: 

Routine 1: 

(a) Do the *-' updating for subblock B-or (where the jobs of or are removed 

from B) assuming this subblock starts at t, + Z pr. Use Rule 1 to 
ksor 

identify the first job, s, of the subblock. If Rule 1 is not applicable, 

use the branching routine (Routine 2). 

(b) Terminate node or if s is not on the successors list of r. Otherwise do 

the 11-11 updating for subblock B-ors whose start time is t, + E Pk. 
ksors 

If all "t '1 I' entries become n-1) identify via Rule 1 the m-job sequence that 

follows node (rr and terminate node or. Otherwise use Routine 2. 

Routine 2 (Branchino : Branch node or by considering all possible successors s 

of r. Terminate node srs if r>s and t,, 5 t, + E Pr. 
kra 

Relax Rule 1 as follows: We say that ktB is the semi-first job of B if all 

entries of T, are "+" in column k and fit,," or 11-11 in row k. 

It is obvious that: a) k is the first job of B once block B starts at 

max t,,. j>k, b) There is exactly one semi-first job of B. 
jeB 
Remark: Routine 1 is especially powerful when t, is relatively close to the 

largest t,, of submatrix T, or at least the largest t,,. Consider block B, of 

Example 1 where t 
B, 

=270. Then 6 is the' semi-first job of B, and ma% t,, = 291. 
jtB; 

For any node r#6 where p, + 291-270 = 21, job 6 is the first job of subblock 

B,-(r). This eliminates jobs 1,2,3 from the first position of the B,-sequence 

since 6 is not on their successors list. Job 16 is also eliminated from the 

first position since I and 3 are its only successors. The branching routine in 

this example is limited to single or two job nodes sr since subblocks B,-ur are 

completely decomposable. 
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Although the developed properties are based on the assumption that the 

machine is not idle once it starts processing at time t,aO, Property 2 guarantees 

that the optimal schedule of our model is to be found among the candidate seguen- 

ces produced by the decomposition process, Routines 1 (with the relaxed Rule 1) 

and 2 and an optimal timing algorithm of, say, [31 or [61. 

Consider block B, of Example 1. The successors list is given in Table 1. 

Table 1 
Successor List for Block B, 

Job Successors 

1 3, 16, 17, 19 
2 1, 3, 16, 17, 19 
3 16 
6 1, 2, 3, 16, 17, 19 

16 1, 3 
17 1, 2, 3, 6, 16, 19 
19 1, 2, 3, 6, 16 

Routines 1 and 2 generate the following four B,-sequences: 

6,2,1,17,19,3,16; 17,6,2,1,19,3,16 

17,19.6,2,1,3,16; 19,6,2.1.17,3,16. 

The total number of candidate sequences is 6 since the jobs of B, can be arranged 

in order 5.15 and 15.5. Without using Routines 1 and 2 we would have to consider 

10,080 candidate sequences (i.e., 2!*7!). The optimal timing algorithm of [31 

or [61 for o=l and P=5 produces an optimal schedule where the jobs of B, and B, 

are arranged in order 5.15 and 17,19,6,2,1,3,16 respectively. The cost of this 

schedule is 507697. For this particular schedule processing starts at 0 and is 

uninterrupted. 

The number of candidate sequences may be even further reduced under certain 

conditions. Suppose that stage two of the decomposition procedure produced a 

sequence composed of single jobs and r multijob blocks B1,B2,...,Br where 
I. 

tBl < tBl < . . . < t 
B,' 

Then the total number of candidate sequences is II m, 
s=1 

where m, is the number of B.-sequences. We will show how a delay of the start 
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time of a job or block affects the number of B.-sequences of subsequent blocks. 

Consider an extreme situation where block B, starts not earlier than 

t, = tBl + max [max tij-t,l. 
1+.9+r i,jtB, ‘ 

Then all r blocks decompose completely and the number of candidate sequences 

shrinks to one since there is only one B.-sequence for each s. Let k be the 

semi-first job of B,. One can further decrease the start time t, by replacing 

max t,, = 

i,jcB, 
U with max tkj = v for those B, where u-vrp, and still end up with a 

jfB, 
single candidate sequence. 

l l 

l 

Consider a version of our model where, due to technological reasons or high 

idle costs, the processing on the machine cannot be interrunted. For this ver- 

sion the set of candidate sequences remains the same. Note that the start time 

t, of a given candidate sequence S uniquely defines the start times for each job 

of S and f(S) is a convex function of t,. On that basis we formulate a very 

simple algorithm to find the optimal start time of S. 

1. Start with t,=O. 

2. Find the set E of early jobs and set T of non-early jobs 

3. Calculate A = oEp, and B = PZp, 
kfE krT 

4. Stop if B-A+O. 

5. If B-A<0 then increase t, by min cd,-C,). GO to 2. 
ktE 

We apply the algorithm for every candidate sequence to find the optimal 

schedule. 

Next consider the common due date version of our model treated by Rachama- 

dugu [41. It is known that the jobs are processed without interruption. Formula 

(2) becomes 

*j aij (t) = ppj [t+pj-dl - z: [t+Pi-dl + [~~I~~~ Lt+Pi+pjsdl. i 1 1 1 
It is very easy to verify that Axj(t)20, Vt for each of the four intervals 

t + d-a-p,, d-PI-p, c t 5 d-p,, d-p, < t L d-p,, and d-p, < t. 

Thus i-j unconditionally for every icj which means that l,Z,...,n is the optimal 
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sequence. This confirms Rachamadugu's result about the optimality of the LPT 

sequence _ 

4. Comnutational Experience 

We tested our decomposition method and Routines 1 and 2 on a number of 

randomly generated problems on IBM PS/Z-70 using PASCAL. The integer processing 

times were drawn from a uniform distribution in a range [l, loo] while the due 

dates were generated from a uniform distribution of integers in a range [pa,pb] 
n 

where p = E p . 
k=l k 

Thus the tardiness factor T = 1 - y and the relative range 

R=b-a. For each of ten combinations of a,b and n, twenty test problems were 

generated. These data were used to solve ET problems for a=l, p-1 and ff=l, 0~5. 

The performance of our method that utilizes the optimal timing algorithm of [6] 

for 400 test problems where n=40 and SO is summarized in Table 2. 

n-40 n-50 

a-b # of * of 
CPl,&¶-1 a-1,p-5 cand seq a-l (p-1 o-1,&9-5 cand seq 

0.1-0.5 lr2.18 32.96 20 51.41 53.17 20 

0.1-0.9 31.97 35.04 20 46.46 44.38 21 
# 

0.1-1.3 ) 32.90 1 33.50 21 42.57 43.34 31 

0.1-1.7 53.61 50.91 177 52.57 50.37 7s 

0.1-2.1 50.87 62.21 111 122.32 115.34 261 

Table 2. Performance of the Solution Procedure: 
Cumulative CPU Time in Seconds for 20 Examples. 

Notice that the set of candidate optimal sequences does not depend on o and 0, 

while the actual optimal schedule does. The reduced sets turned out to be very 

small. In 79 out of 80 test problems for (a,b)-(0.1,O.S) and (0.1,0.9) there was 

a single sequence per example. We also solved all 100 examples of [7] using the 

optimal timing algorithms of [3] and [6]. The CPU times were 309.38 seconds and 

251.04 respectively. 

5. Final Remarks 

This paper presents the first efficientmethodto solve an earliness-tardi- 

ness single machine scheduling model with idle time permitted without using any 
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branch and bound method. In this model the earliness and tardiness penalties are 

proportional to the processing times of the jobs. The properties of adjacent job 

orderings provide tools to decompose the problem and reduce it to a small number 

of candidate sequences that are examined for optimality by an optimal timing 

algorithm. It would be interesting to explore whether some of those properties 

can be applied for the general earliness tardiness models. 

ADDendix 

Proof of Lemma 1 

Let f,(S) = : p*E, and f,(S) = : p*T, . 
k=l k=l 

According to Lemma 1 of [ll, f,(S) = f,(S)+K, where K does not depend on S. con- 

sequently, f(S) = (a+P)f,(S) + UK. Let T(S)=Pf,(S). 

Then Ai, = (cr+P) [f,(S,)-f,(S,)l while AI,(t) = P[f,(S,)-f,(S,) 1. 

Hence 
Ai. A;. (t) 

u+p = P , QED. 

[ll 

131 

[41 

[Sl 

I61 

r71 
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